skip to primary navigationskip to content

Capturing light with an antenna based on DNA

The remarkable performance of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies.

Analogous to origami, the Japanese art of paper folding, DNA can be folded into complex shapes via molecular self-assembly. This novel technique, known as ‘DNA origami’, has enabled the creation of sophisticated DNA nanostructures with precise control over size, shape and chemical functionality. This makes it an elegant technique to mimic some of the exquisite nano-engineering of biological light-harvesting complexes and explore the optimal co-ordination of pigments in efficient antennas.

We have recently designed an artificial, programmable antenna system on a DNA origami platform. Creating a library of over 40 assembled antenna structures, we systematically analysed the light-harvesting efficiency with respect to the geometry and number of “donor” pigments that can capture and transfer photonic energy to an “acceptor” pigment. This new origami platform is extremely reliable and provides a robust, programmable substrate for implementing advanced nanoscale antenna design concepts.

Elisa Hemmig

PhD Student

Department of Biochemistry

RSS Feed Latest news

Call for Midi+PhD proposals

Dec 20, 2016

The NanoDTC invites Midi+PhD proposals from Cambridge Academics for its 2016 cohort. Submission deadline is 20th Feb 2017.

Admissions for Oct 2017 - 4th Jan Deadline

Dec 15, 2016

We are accepting applications for Oct 2017 entry. The deadline for applications to be considered in the 2nd round is 4th Jan. Please email if you have questions.

Helmholtz Prize for Nicholas Bell (NanoDTC Alumnus c2009)

Jun 27, 2016

Dr Nicholas Bell along with his PhD Supervisor Prof. Ulrich Keyser has received the 2016 Helmholtz Prize for groundbreaking work on identification and quantification of proteins in complex mixtures using nanopore sensing.

NanoDTC Translational Prize Fellows Selected

Jun 16, 2016

Students Richard Howe, Tarun Vemulkar and Jeroen Verheyen have been selected as the NanoDTC Translational Prize Fellows for 2016-17