skip to primary navigationskip to content
 

Making better displays by merging two wonder materials

Will it appeal to your curiosity if you hear that someone is going to merge together two wonder materials: one that is beautifully coloured and another that is very flat, conductive, flexible and strong?

The whole buzz in making modern displays is for ones that are flexible - televisions that can bend around walls and tablets that can be rolled like a newspaper. These can be achieved by using graphene – a very thin, strong, conductive layer of carbon atoms - and liquid crystals, which are colourful organic molecules that are already used in displays. This exciting research happens at the Engineering Department of Cambridge University and is a part of Nanotechnology DTC programme.

There has been a lot of research done since graphene’s discovery in 2004 and the Nobel Prize award in 2010. However, one specific area is not yet well understood, namely what happens when liquid crystals molecules align on graphene. The alignment effect has been proven to exist, yet there are still many doubts to how exactly this happens especially in terms of symmetry and strength of interaction. These properties need to be well understood before they can be exploited for the purpose of making devices. The prospects look bright as apart from graphene’s inherent flexibility, another potential advantage of these devices is the fast response rate to the electric field – which means that displays made of these two materials can refresh quickly and hence the image is much more natural and smooth.  Good characterisation of these parameters will pave the way for working prototypes and in consequence commercial application of this technology.

The interesting thing about this work is that it tries to connect fundamental physical understanding of molecules’ alignment through interesting prototypes to manufacturing of useful devices which can improve our everyday experience with displays. What is more it is truly interdisciplinary – it involves collaboration with people form the engineering, physics and chemistry departments – a highlight of modern science where experts from many disciplines are needed to achieve a goal.

Tomasz Cebo

Hofmann Group, Engineering

RSS Feed Latest news

Call for Midi+PhD proposals

Dec 20, 2016

The NanoDTC invites Midi+PhD proposals from Cambridge Academics for its 2016 cohort. Submission deadline is 20th Feb 2017.

Admissions for Oct 2017 - 4th Jan Deadline

Dec 15, 2016

We are accepting applications for Oct 2017 entry. The deadline for applications to be considered in the 2nd round is 4th Jan. Please email team@nanodtc.cam.ac.uk if you have questions.

Helmholtz Prize for Nicholas Bell (NanoDTC Alumnus c2009)

Jun 27, 2016

Dr Nicholas Bell along with his PhD Supervisor Prof. Ulrich Keyser has received the 2016 Helmholtz Prize for groundbreaking work on identification and quantification of proteins in complex mixtures using nanopore sensing.

NanoDTC Translational Prize Fellows Selected

Jun 16, 2016

Students Richard Howe, Tarun Vemulkar and Jeroen Verheyen have been selected as the NanoDTC Translational Prize Fellows for 2016-17