skip to primary navigationskip to content
 

Dr. Fiona Christie

Dr. Fiona Christie

Trainee Patent Attorney at HGF Limited – Intellectual Property Specialists

NanoDTC Student, Cohort 2009


Departments and Institutes

Chemistry:

Key Publications

Research Overview

How Supramolecular Chemistry can control aggregation

The formation of clump-like  ordered structures in proteins has been associated with several diseases such as Alzheimer’s, Parkinson’s and type II diabetes, and is now thought to be a general feature of protein aggregation. There is considerable interest within the pharmaceutical industry in maintaining the integrity of protein-based drugs such as insulin during production and administration of the drug, however little is understood about the initial stages of aggregation.

My PhD is based on uncovering the supramolecular host-guest interactions between proteins or peptides, and special cucurbit[n]uril molecules. The cucurbit[n]uril family (written CB[n]) are a series of “barrel shaped” host molecules which are used to bind guest molecules, such as amino acids, to form larger constructs. The smaller “barrels” are capable of binding one guest while larger ones can accommodate up to two guests simultaneously. In this way, it is possible to “handcuff” molecules together in solution to harness or induce desired properties.

insulin molecule
Capturing insulin molecules using CB[8] can provide a way of interrupting the aggregation pathway of the protein, reducing the problems associated with delivery of insulin-based drugs. Shown in the figure are two insulin molecules thethered by one CB[8] molecule in the centre.
The focus of my research involves using the host-guest interactions of CB[7] and CB[8] to better understand the aggregation mechanism of human insulin. Current results indicate that on binding to the CB cavities, the natural aggregation pathway of insulin is interrupted and instead an immediate alternative aggregation pathway is observed. Under our protein denaturing conditions, the resulting aggregation process is temperature-dependent but yet remains fully reversible in the presence of CB[8]. On releasing the protein guest from the CB[8] host by increasing temperature, the insulin then aggregates irreversibly in a manner comparable to the native protein. We thus have a way to control aggregation by thermal incubation. From further studies, we hope to be able to control the aggregation of this protein during the storage and delivery processes to reduce the incidence of problematic insulin amyloid formation.

Fiona Christie

http://www-melville.ch.cam.ac.uk/scherman/scherman.html

RSS Feed Latest news

NanoDTC Translational Prize Fellow's nano-battery wins accolades

Jul 27, 2017

Jean de La Verpilliere (c2013), NanoDTC Translational Prize Fellow and Managing Director of the newly formed startup Echion Technologies has won prizes in the Royal Society of Chemistry 2017 Emerging Technologies Competition and the Kings' College Entrepreneurship Prize

Call for Mini Project proposals

Jul 24, 2017

The NanoDTC invites Mini Project proposals from Cambridge Academics for its incoming c2017 cohort. Submission deadline is 20th Oct 2017.

NanoDTC Students and Associates visit Thermo Fischer (FEI) and ASML

Jul 12, 2017

NanoDTC Students and Associates visit Thermo Fischer (FEI) and ASML to gain industry perspective of the application of Nanotechnologies

Helmholtz Prize for Nicholas Bell (NanoDTC Alumnus c2009)

Jun 27, 2016

Dr Nicholas Bell along with his PhD Supervisor Prof. Ulrich Keyser has received the 2016 Helmholtz Prize for groundbreaking work on identification and quantification of proteins in complex mixtures using nanopore sensing.