skip to primary navigationskip to content
 

Capturing light with an antenna based on DNA

The remarkable performance of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies.

Analogous to origami, the Japanese art of paper folding, DNA can be folded into complex shapes via molecular self-assembly. This novel technique, known as ‘DNA origami’, has enabled the creation of sophisticated DNA nanostructures with precise control over size, shape and chemical functionality. This makes it an elegant technique to mimic some of the exquisite nano-engineering of biological light-harvesting complexes and explore the optimal co-ordination of pigments in efficient antennas.

We have recently designed an artificial, programmable antenna system on a DNA origami platform. Creating a library of over 40 assembled antenna structures, we systematically analysed the light-harvesting efficiency with respect to the geometry and number of “donor” pigments that can capture and transfer photonic energy to an “acceptor” pigment. This new origami platform is extremely reliable and provides a robust, programmable substrate for implementing advanced nanoscale antenna design concepts.

Elisa Hemmig

NanoDTC PhD Associate 2014

Department of Biochemistry

RSS Feed Latest news

Black researchers shaping the future

Oct 13, 2018

As the UK marks Black History Month, researchers from across the University talk about their route to Cambridge, their inspiration and their motivation.

‘Symposium as Sea’ in Antarctica

Oct 05, 2018

c2014 student Hannah Laeverenz Schlogelhofer has returned from an expedition to Antarctica as part of the Homeward Bound Leadership Programme.

NanoDTC Associates Programme

Sep 26, 2018

We are now accepting applications from current PhD students in Cambridge to become affiliated to the NanoDTC. Deadline 25th Oct.

Diversity Champ Carmen wins IoP Medal and Prize

Jul 11, 2018

Congratulations Carmen Palacios Berraquero (c2013) for winning the 2018 Jocelyn Bell Burnell Medal and Prize – an IoP award for outstanding early career female physicists