skip to primary navigationskip to content
 

Finding Small Things with Tiny Holes

Small things are difficult to see. That’s why we use microscopes to look at ants, bacteria and human cells. The smaller the object, the more powerful and complicated a microscope must be – but the laws of physics mean we cannot keep going forever. Because light is a wave, it has a certain wavelength, and things smaller than this wavelength cannot be observed.

Many interesting biological molecules like DNA and proteins are significantly smaller than the wavelength of visible light. In fact, a DNA strand’s diameter is less than a hundredth the size of light’s wavelength, and therefore invisible under an optical microscope. Scientists have devised a number of techniques to nonetheless observe these small molecules. Physicists, for example, learn about their structure by prodding them with needles only a single atom wide.  However, none of these techniques are quite as simple as peering through a microscope to see what’s there.

For my PhD, I’m working on a method that uses nanopores to “see what’s there” without having to worry about the wavelength of light. Nanopores are tiny holes with diameters of only tens of nanometres. These holes can be made in glass, very thin materials like graphene or even from interwoven strands of DNA with a technique called DNA origami. When these nanopores are immersed in salt solution and a voltage is applied across them, ions start to pass through the hole, much like electrons in a wire. Because many small biological molecules are charged, they too start passing through the nanopore. But as they do, they block the ions from going through at the same time, creating a drop in the current. These drops in current differ depending on the type of molecule that passes through the nanopore. Therefore, by analysing the number and shape of drops in the current, we can “see what’s there”: which molecules are present and how many there are in a solution.  

Nanopores can be made quite easily, thus they promise to be a simple and cheap way of detecting  molecules – molecules so small they are invisible to the light our eyes use to see the world.

Niklas Ermann

NanoDTC PhD Associate 2016

 

Image from WeClipart

RSS Feed Latest news

Black researchers shaping the future

Oct 13, 2018

As the UK marks Black History Month, researchers from across the University talk about their route to Cambridge, their inspiration and their motivation.

‘Symposium as Sea’ in Antarctica

Oct 05, 2018

c2014 student Hannah Laeverenz Schlogelhofer has returned from an expedition to Antarctica as part of the Homeward Bound Leadership Programme.

NanoDTC Associates Programme

Sep 26, 2018

We are now accepting applications from current PhD students in Cambridge to become affiliated to the NanoDTC. Deadline 25th Oct.

Diversity Champ Carmen wins IoP Medal and Prize

Jul 11, 2018

Congratulations Carmen Palacios Berraquero (c2013) for winning the 2018 Jocelyn Bell Burnell Medal and Prize – an IoP award for outstanding early career female physicists