skip to primary navigationskip to content
 

Squeezing electricity out of new materials

Newly designed materials are allowing the creation of devices that generate electricity when they’re squashed or stretched.

The trick is unscrambling the spaghetti of chains of atoms that makes the material up and stacking and ordering them to give this effect. It’s been shown that this can be achieved by forcing the material through a template of tiny holes, one thousand times smaller than the width of a human hair.
Devices using these materials could power sensors on vehicles, machinery, animals, people or even things inside the human body, like pacemakers, where changing the batteries is currently expensive or inconvenient. Since the energy generating component is simply a material rather than an assembly of components, they’re also able to be used in very small or very thin devices, where assembling things is difficult.

These materials are piezoelectric, which means they generate electricity when they’re stretched and also means they stretch when you apply electricity to them. Piezoelectric materials have been known for over 100 years and are used in many everyday things today, including the cigarette lighters that you push a button down to light, where pushing the button is compressing a piezoelectric crystal that results in a spark.

What makes these new materials exciting is that, as well as being piezoelectric, they’re also soft. Most piezoelectric materials are hard solids and many of the best ones contain toxic components. These newly designed materials however are flexible, soft and non-toxic. This makes them exciting for energy generating devices by opening up a lot of new possibilities from the stretchy and squashy nature of the material.

Current research into making further chemical changes to the materials and processing them in increasingly clever ways to make the chains all line up by themselves is making increasing improvements to the material. This development is what will, in the future, allow these materials to be used effectively in devices to generate electricity.

Richard Whiter

RSS Feed Latest news

Admissions for Oct 2018 - 4th Jan Deadline

Dec 07, 2017

We are accepting applications for Oct 2018 entry. The deadline for applications to be considered in the 2nd round is 4th Jan. Please email team@nanodtc.cam.ac.uk if you have questions.

Call for Midi+PhD Project Proposals

Dec 01, 2017

We are now accepting Midi+PhD Project Proposals from Cambridge Academics for our 2017 cohort/ Deadline: 26th Feb 2018

ERC PoC award for further technology development by Translational Prize Winners

Nov 23, 2017

Team receives £150k ERC Proof-of- Concept award for further development of their functional magnetic materials for biomedical applications

NanoDTC-Impulse-Maxwell Innovation Seminar Series - Prof. Ijeoma Uchegbu, Nanomerics

Oct 10, 2017

The first event in the joint NanoDTC-Impulse-Maxwell Innovation Seminar Series kicks off with a series of brilliant speakers who are at different stages in their Innovation  and Entrepreneurship journey.