skip to primary navigationskip to content
 

Seeing dancing molecules on a surface

Highly pitched sound could be used to make molecules dance on a surface and help us discover their identity.

What happens with molecules when a liquid comes in contact with a solid surface is crucial in many areas of nanotechnology, such as catalysis, developing new energy materials and biosensing. Nuclear magnetic resonance (NMR) is the principle behind nuclear magnetic imaging (MRI) and occurs when atoms in a strong magnetic field are exposed to radio waves. The atoms can absorb these waves and leave footprints characteristic to their identity. A versatile and powerful technique emerged from this principle, to study both liquids and solids (including deep in our brains in the case of MRI), and yielding very detailed structural information.

However, due to its poor sensitivity, current NMR techniques are not great for studying thin layers of water mixed with molecules spread onto a solid surface. In this project, I’m investigating the possibility of using acoustic waves to increase the visibility of these molecules.

A thin quartz crystal, similar to the ones used in watches, produces sound and creates ripples when immersed in water. These vibrations make the molecules which are close to the surface dance in the exact rhythm of the crystal. If this rhythm, which is called oscillating frequency, has a specific value, atomic nuclear spins flip over and a footprint of the molecules can be recorded. The challenge lies in determining whether these nuclei actually flip over when they are subjected to sound and what are the ideal conditions. To achieve this I have designed two experimental set-ups using and preliminary experiments show that there is an interaction between sound and nuclear spins. The source of this interaction still remains a mystery so far, but experiments and calculations are slowly shedding some light on this new concept defined as Nuclear Acoustic Resonance.

Alexandra Grigore

Chemical Engineering and Biotechnology

 

Cover Image- Flow Machines

RSS Feed Latest news

Diversity Champ Carmen wins IoP Medal and Prize

Jul 11, 2018

Congratulations Carmen Palacios Berraquero (c2013) for winning the 2018 Jocelyn Bell Burnell Medal and Prize – an IoP award for outstanding early career female physicists

NanoVignettes - nanoscience through the eyes of artists

Jun 19, 2018

Check out these amazing short films about our students' research, made in collaboration with artists at different career stages

Call for Mini Project proposals

Jun 10, 2018

The NanoDTC invites Mini Project proposals from Cambridge Academics for its incoming c2018 cohort. Submission deadline is 12th Oct 2018.

NanoDTC Students included in Forbes 30 under 30

Jan 30, 2018

Jean de la Verpilliere and Alex Groombridge have been listed in the Forbes 30 under 30 in Europe.