skip to primary navigationskip to content
 

Controlling nature's patterns

Biology is the most prolific inventor and producer of complex functional materials - how can we do the same?

I am interested in understanding how nature controls patterns in the structures it makes. The ridges of the waterlily leaf are naturally evenly-spaced, creating a leaf that is strong, light and efficient. This pattern is generated by an interplay between signalling and physical forces controlling the behaviour of the individual cells in the leaf. Most impressively, all the information needed to produce the leaf is encoded within any given cell of the leaf in its genetic code.

In my research I am interested in understanding to generate patterns through signalling and physical forces, and how this process can be regulated using genetics. A better understanding of these processes could allow us to develop novel biomaterials with tailored properties and structure. These materials could be produced incredibly sustainably as they could be recycled with the same processes that nature uses to recycle.

I am in particular studying a computational model of pattern formation in a bacterial colony. I am using this computational simulation to design new pattern forming genetic architectures that would be engineered into synthetic bacterium. This would be the first step towards designing custom biomaterials.

Unlocking nature’s methods for producing materials would open exciting new routes for producing clever materials that can be produced sustainably nearly indefinitely.

Matthew Griffiths

PhD Student, Cohort 2013

Department of Chemistry

 

Cover Image- Pinterest

 

 

RSS Feed Latest news

Diversity Champ Carmen wins IoP Medal and Prize

Jul 11, 2018

Congratulations Carmen Palacios Berraquero (c2013) for winning the 2018 Jocelyn Bell Burnell Medal and Prize – an IoP award for outstanding early career female physicists

NanoVignettes - nanoscience through the eyes of artists

Jun 19, 2018

Check out these amazing short films about our students' research, made in collaboration with artists at different career stages

Call for Mini Project proposals

Jun 10, 2018

The NanoDTC invites Mini Project proposals from Cambridge Academics for its incoming c2018 cohort. Submission deadline is 12th Oct 2018.

NanoDTC Students included in Forbes 30 under 30

Jan 30, 2018

Jean de la Verpilliere and Alex Groombridge have been listed in the Forbes 30 under 30 in Europe.