skip to primary navigationskip to content
 

Controlling nature's patterns

Biology is the most prolific inventor and producer of complex functional materials - how can we do the same?

I am interested in understanding how nature controls patterns in the structures it makes. The ridges of the waterlily leaf are naturally evenly-spaced, creating a leaf that is strong, light and efficient. This pattern is generated by an interplay between signalling and physical forces controlling the behaviour of the individual cells in the leaf. Most impressively, all the information needed to produce the leaf is encoded within any given cell of the leaf in its genetic code.

In my research I am interested in understanding to generate patterns through signalling and physical forces, and how this process can be regulated using genetics. A better understanding of these processes could allow us to develop novel biomaterials with tailored properties and structure. These materials could be produced incredibly sustainably as they could be recycled with the same processes that nature uses to recycle.

I am in particular studying a computational model of pattern formation in a bacterial colony. I am using this computational simulation to design new pattern forming genetic architectures that would be engineered into synthetic bacterium. This would be the first step towards designing custom biomaterials.

Unlocking nature’s methods for producing materials would open exciting new routes for producing clever materials that can be produced sustainably nearly indefinitely.

Matthew Griffiths

PhD Student, Cohort 2013

Department of Chemistry

 

Cover Image- Pinterest

 

 

RSS Feed Latest news

Admissions for Oct 2018 - 4th Jan Deadline

Dec 07, 2017

We are accepting applications for Oct 2018 entry. The deadline for applications to be considered in the 2nd round is 4th Jan. Please email team@nanodtc.cam.ac.uk if you have questions.

Call for Midi+PhD Project Proposals

Dec 01, 2017

We are now accepting Midi+PhD Project Proposals from Cambridge Academics for our 2017 cohort/ Deadline: 26th Feb 2018

ERC PoC award for further technology development by Translational Prize Winners

Nov 23, 2017

Team receives £150k ERC Proof-of- Concept award for further development of their functional magnetic materials for biomedical applications

NanoDTC-Impulse-Maxwell Innovation Seminar Series - Prof. Ijeoma Uchegbu, Nanomerics

Oct 10, 2017

The first event in the joint NanoDTC-Impulse-Maxwell Innovation Seminar Series kicks off with a series of brilliant speakers who are at different stages in their Innovation  and Entrepreneurship journey.