skip to primary navigationskip to content
 

Routes of Captured Light

By following energy flowing through new materials, the next generation of solar cells is being revealed.

It’s hard getting energy out of a solar cell. As excitement builds over the expansion of renewable energy resources, further improvement of the base technologies is being achieved using ultrafast laser techniques to take snapshots of the state of new materials- snapshots only a millionth of a billionth of a second long.

In my research, I am helping build a picture of how captured light’s energy is flowing: where it is getting caught in slow traffic or taking the wrong exit. Up to now we have not been able to achieve a detailed understanding of the fundamental performance of the newest, most promising nanomaterials. By using this ultrafast photoluminescence technique we will be able to design cheaper, more efficient solar cells than ever before. With this information, new materials are being developed with fast tracks for captured light to more efficiently be turned into the electricity we use to power our homes and industries.

The growing challenge of providing energy sustainably motivates the efforts to more effectively harness the energy of the sun. I am working to track motion of energy through materials including nanowires, nanocrystals, and perovskites. I expose these materials to an ultrashort burst of light, which causes photovoltaic materials to absorb and then emit a small portion of the light. By concentrating this emitted light and concentrating a second ultrashort burst together, snapshots of the light emission can be selected out to reveal how energy is moving within the emitting material. By tracking this motion, I hope to discover a means of efficiently capturing the energy from the light absorbed in these materials.

 

Gregory Tainter

PhD Student

Department of Engineering

 

Cover Image- Paul Reiffer- National Geographic

RSS Feed Latest news

Admissions for Oct 2018 - 4th Jan Deadline

Dec 07, 2017

We are accepting applications for Oct 2018 entry. The deadline for applications to be considered in the 2nd round is 4th Jan. Please email team@nanodtc.cam.ac.uk if you have questions.

Call for Midi+PhD Project Proposals

Dec 01, 2017

We are now accepting Midi+PhD Project Proposals from Cambridge Academics for our 2017 cohort/ Deadline: 26th Feb 2018

ERC PoC award for further technology development by Translational Prize Winners

Nov 23, 2017

Team receives £150k ERC Proof-of- Concept award for further development of their functional magnetic materials for biomedical applications

NanoDTC-Impulse-Maxwell Innovation Seminar Series - Prof. Ijeoma Uchegbu, Nanomerics

Oct 10, 2017

The first event in the joint NanoDTC-Impulse-Maxwell Innovation Seminar Series kicks off with a series of brilliant speakers who are at different stages in their Innovation  and Entrepreneurship journey.